Electrophysiological characterization of membrane disruption by nanoparticles.

نویسندگان

  • Maurits R R de Planque
  • Sara Aghdaei
  • Tiina Roose
  • Hywel Morgan
چکیده

Direct contact of nanoparticles with the plasma membrane is essential for biomedical applications such as intracellular drug delivery and imaging, but the effect of nanoparticle association on membrane structure and function is largely unknown. Here we employ a sensitive electrophysiological method to assess the stability of protein-free membranes in the presence of silica nanospheres of different size and surface chemistry. It is shown that all the silica nanospheres permeabilize the lipid bilayers already at femtomolar concentrations, below reported cytotoxic values. Surprisingly, it is observed that a proportion of the nanospheres is able to translocate over the pure-lipid bilayer. Confocal fluorescence imaging of fluorescent nanosphere analogues also enables estimation of the particle density at the membrane surface; a significant increase in bilayer permeability is already apparent when less than 1% of the bilayer area is occupied by silica nanospheres. It can be envisaged that higher concentrations of nanoparticles lead to an increased surface coverage and a concomitant decrease in bilayer stability, which may contribute to the plasma membrane damage, inferred from lactate dehydrogenase release, that is regularly observed in nanotoxicity studies with cell cultures. This biophysical approach gives quantitative insight into nanosphere-bilayer interactions and suggests that nanoparticle-lipid interactions alone can compromise the barrier function of the plasma membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Characterization of Novel Mixed Matrix Polyethersulfone Nanofiltration Membrane Modified by Iron-Nickel Oxide Nanoparticles

In this study, a mixed matrix polyethersulfone/iron-nickel oxide nanoparticle nanofiltration membrane was prepared by the solution casting technique. Polyvinylpyrrolidone was also used as a membrane pore former in membrane fabrication. The effect of iron-nickel oxide nanoparticles concentration in the casting solution on the membrane structure and performance was investigated. Scanning...

متن کامل

Electrodialysis Heterogeneous Anion Exchange Membranes Filled with TiO2 Nanoparticles: Membranes' Fabrication and Characterization

In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane wate...

متن کامل

Fabrication and Characterization of PES Based Nanofiltration Membrane Modified by Zeolite Nanoparticles for Water Desalination

In the present study, mixed matrix PES/zeolite nanoparticles nanofiltration membranes were prepared via the solution casting technique. The effect of zeolite concentration on the PES membrane performance and its properties was studied. Cross-sectional scanning electron microscope (SEM) observations showed that the porosity in the membrane sub-layer was increased with addition of zeolite into th...

متن کامل

Cation Exchange Nanocomposite Membrane Containing Mg(OH)2 Nanoparticles: Characterization and Transport Properties

In this study, ion exchange nanocomposite membranes was prepared by addition of Mg(OH)2 nanoparticles to a blend containing sulfonated polyphenylene oxide and sulfonated polyvinylchloride via a simple casting method. Magnesium hydroxide nanoparticles were synthesized via a facile sono-chemical reaction and were selected as filler additive in fabrication of ion exchange nanocomposite membranes. ...

متن کامل

Fabrication and Electrochemical Characterization of Polyvinyl Chloride Based/Chitosan-co- Iron Nickel Oxide Nanoparticles Composite Heterogeneous Cation Exchange Membranes

In this research, polyvinylchloride based composite heterogeneous cation exchange membranes were prepared by the solution casting technique. Chitosan-co-iron nickel oxide nanoparticles were utilized as membrane surface modifier to improve the membranes electrochemical properties. The effect of additive nanoparticle concentration in the modifier solution on the properties of composite membranes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2011